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Abstract

Modern applications require methods that are computationally feasible on large
datasets while retaining good statistical properties. Recent work has focused on devel-
oping fast and randomized approximations for solving least squares problems when the
data are too large to fit into memory easily or when computations are at a premium.
Many of these techniques rely on data-driven subsampling or random compression. In
this paper, we provide new approximate algorithms for solving penalized least squares
problems which have improved statistical performance relative to existing methods.
We provide the first efficient methods for tuning parameter selection, compare our
methods with current approaches via simulation and application, and provide theoret-
ical intuition which makes explicit the impact of approximation on statistical efficiency
and demonstrates the necessity of careful parameter tuning.
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1 Introduction

Recent work in large-scale data analysis has focused on developing fast and randomized

approximations to important numerical linear algebra tasks such as solving least squares

problems (Becker et al., 2017; Pilanci and Wainwright, 2015; Wang et al., 2017; Zhang et al.,

2013) and finding spectral decompositions (Gittens and Mahoney, 2013; Halko et al., 2011;

Homrighausen and McDonald, 2016). These approaches, known as compression, sketching,

or preconditioning, take a given data set and construct smaller, “compressed,” data. This

compressed data is then used as a surrogate for the original data, so that statistical analyses

can be performed more quickly or use less storage space. For example, NOAA satellites with

Advanced Very High Resolution Radiometers are unable to store all the data they collect

each day. Thus global coverage data—as opposed to high resolution local coverage data,

which is immediately offloaded—is downsampled from the original 1 kilometer resolution to

4 km before being sent to a ground station (Frey et al., 1996; Staten et al., 2016). Hence, all

statistical models based on these measurements are necessarily using compressed data. Of

course, analyses using these subsampled data may be less accurate than if they had used all

the data, but the analyses can also be performed much more quickly.

Existing theoretical justifications for these sorts of approximations upper bound the dif-

ference in some objective function (say the sum of squared residuals) evaluated at the “com-

pressed” solution relative to the full-data solution. In this paper, we take a more statistical

perspective: we investigate the performance in terms of parameter estimation and prediction

risk, integrating over the randomness in the data as well as any in the compression algorithm.

Leveraging insights into the statistical behavior of the most commonly used compressions,

we develop and explore novel algorithms for compressed least squares and provide princi-

pled methods of tuning parameter selection, an important aspect of statistical performance

absent from existing literature.

As a preview of the benefits or our methods, Figure 1 compares the computational timing

and out-of-sample prediction error of four compression methods relative to ridge regression

on the whole data. The figure shows two existing methods of compression—full compression

(FC) and partial compression (PC)—and the two methods we develop here—linear com-

bination compression (linear) and convex combination compression (convex)—evaluated on
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Figure 1: These plots show the computational time and predictive accuracy of two existing

methods (FC and PC) and our two proposed methods (convex and linear) as compared to

performing ridge regression on the whole dataset.

data generated from both a dense and a sparse linear model. The parameter q determines

the amount of compression with lower values meaning more compression. Heuristically, one

can think of sampling q observations from the original data to use for analysis. In this

example, the simulated data has n = 100,000 observations and p = 1000 predictors. Even

when q < p � n, the accuracy lost by these methods is small relative to the increase in

computation time, and essentially negligible for q = p.

1.1 Overview of the problem

Suppose we make n paired, observations Xi ∈ Rp and Yi ∈ R, i = 1, . . . , n, where Xi is a

vector of measurements, Yi is the associated response, and n � p with both n and p very

large. Concatenating the vectors Xi row-wise into a matrix X := [X>1 , . . . , X
>
n ]> ∈ Rn×p

and the responses Yi into a vector Y , we assume that there exists a β∗ ∈ Rp such that

Y = Xβ∗ + σε,
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with E[ε] = 0. For our theoretical results in Section 6, we will assume that V[ε] = In for

convenience, but this assumption can be removed with some care and is immaterial for the

methodological development.

One can seek to estimate β via linear regression. That is, for any vector β ∈ Rp, we define

`(β) :=
∑n

i=1(Yi − X>i β)2 and, writing the (squared) Euclidean norm as ||Xβ − Y ||22 :=∑n
i=1(Yi −X>i β)2, a least squares solution is a vector β̂ ∈ Rp such that

`(β̂) = min
β
||Xβ − Y ||22 . (1)

This is given by β̂ = X†Y , where X† is the Moore-Penrose pseudo inverse of X. If X has

full column rank, the solution simplifies to β̂ = (X>X)−1X>Y .

The ordinary least squares (OLS) solution can be found stably in O(np2) computa-

tions when p > n using, for example, routines in LAPACK such as the QR decomposi-

tion, Cholesky decomposition of the normal equations, or the singular value decomposition

(Golub and Van Loan, 2012). It also has a few well-known statistical properties such as being

a minimum variance unbiased estimator and the best linear unbiased estimator. However,

the classic numerical linear algebraic techniques that compute β̂ require loading X and Y

into random access memory, so this computation can be infeasible or undesirable in practice.

The big-data regime we consider, i.e. n � p and both very large, can happen in many

different scientific areas such as psychology, where cellular phones are used to collect high-

frequency data on individual actions; atmospheric science, where multiresolution satellite

images are used to understand climate change and predict future weather patterns; technol-

ogy companies, which use massive customer databases to predict tastes and preferences; or

medical imaging, where multiple high-resolution brain scans are acquired over some period

of time.

1.2 Prior work

A very popular approach in the approximation literature (Drineas et al., 2011; Rokhlin and

Tygert, 2008; Woodruff, 2014) is to generalize Equation (1) to include a compression matrix

Q ∈ Rq×n, with n > q > p, `Q(β) = ||Q(Xβ − Y )||22. The associated approximation to β̂ is
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the fully compressed estimator (FC)

β̂FC = argmin
β
||Q(Xβ − Y )||22 , (2)

which can be computed via standard techniques by substituting the compressed data QX

and QY for the original. We defer discussion of strategies and trade-offs for specific choices

of Q to Section 2.4, but fast matrix multiplication will require some structure on Q or

multithreaded implementations.

Standard theoretical justifications for full compression define a tolerance ε and a com-

pression parameter q = q(ε) such that, with high probability (Drineas et al., 2012, 2011),

`(β̂FC) ≤ (1 + ε)`(β̂). (3)

In this case, the probability is stated with respect to the process that generates Q only

while the data are considered fixed. Thus (3) is a worst-case analysis since it must hold

uniformly over all data sets, regardless of the “true” data generating process (see results in

Blendenpik (Avron et al., 2010) or LSRN (Meng et al., 2014) for practical considerations).

Relative to the computational properties of these compression methods, there has been

comparatively little work on their statistical properties. Raskutti and Mahoney (2015) an-

alyze various relative efficiency measures of β̂FC versus β̂ as a function of the compression

matrix Q. They find that the statistical quality of β̂FC depends on the oblique projection

matrix U(QU)†U , where U is the left singular matrix of X. Additionally, Zhou et al. (2009)

consider this fully compressed model with the addition of the LASSO penalty under a va-

riety of metrics like variable selection consistency and predictive risk consistency. Ma et al.

(2015) examine mean-squared error performance for leverage-score compression of ordinary

least squares. Their theoretical results are most similar to ours, though for different method-

ologies. Pilanci and Wainwright (2015) examine the algorithmic and statistical properties of

a related method, defined below as partial compression (they call it “Hessian sketching”).

As illustrated in Figure 1, compression techniques operate if q < p (though without

well-developed theoretical guarantees) and also in high dimensions (p > q > n), but this

situation is not well-studied. Compressing instead as XQβ−Y is sometimes termed random

projection. Zhang et al. (2013) proposed “dual random projection” for this context and

Wang et al. (2017) show how to sketch and apply random projection simultaneously (with
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Q1(XQ2β − Y )). However, the intuition behind random projection requires a statistical

model under which X is low rank, and none of this work examines the statistical properties

(only the algorithmic ones). Statistically, it is more reasonable to use the low-rank structure

rather than operate randomly. A good example of such an approach is the work on supervised

principal components analysis (Bair et al., 2006; Ding and McDonald, 2017; Paul et al., 2008).

1.3 Our contributions

This paper, in contrast with most previous research, adopts the perspective that approxi-

mations mimicking the least squares estimator β̂ may produce faster methods, but may not

result in good estimators. Instead, we seek approximations that minimize estimation and/or

prediction error (by analyzing quantities integrated over the data) while simultaneously de-

creasing computational burdens. Our goal is not to beat full-data methods but to create

approximation methods with better statistical performance than existing approaches.

We argue that β̂FC , like β̂, is unbiased for β and hence must have a larger estimation and

prediction error than a regularized version by the Gauss-Markov theorem. The alternative,

namely partial compression (β̂PC defined in Equation (5) below), is biased without any

additional regularization, and often (though not always) performs well in practice. Therefore,

we propose to combine the two and add regularization for improved mean squared error

performance. This improvement is achieved by introducing a tuning parameter to directly

calibrate bias and variance. In this paper, we use an `2 penalty, because we can then

derive statistical results that are comparable to others in the literature. Other methods,

however, such as `1, Dantzig Selector, bridge, or the nonnegative garrote could all be used.

Our estimators can be computed for a fraction of the cost of OLS or ridge regression while

improving performance relative to existing compressed alternatives. Our main contributions

are as follows:

• We present a new family of regularized estimators which linearly combine β̂FC and the

partially compressed estimator and add regularization (Section 2).

• We derive an unbiased risk estimator for selecting tuning parameters in compressed,

regularized problems and demonstrate how to calculate the entire solution path without
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increasing the order of computations (Section 3). There is no previous work which

examines the effect of tuning parameter selection when combined with compression.

• We examine our regularized estimators in simulated and real data examples and find

that they lead to improved performance relative to existing techniques (Section 4 and

Section 5).

• We give theoretical results establishing the mean squared error performance of `2-

regularized compressed estimators for random compression matrices (Section 6). These

results show explicitly the relationship between the amount and type of compression

and the statistical properties of the procedure.

2 Compressed regression

This section presents the standard compressed least squares regression estimators, introduces

our modifications, and discusses the specific form of the compression matrix Q we consider.

2.1 Compressed least squares regression

The fully compressed least squares estimator (notated later as FC), defined in Equation (2),

is the solution to

min
β
||Q(Xβ − Y )||22 = min

β

(
β>X>Q>QXβ − 2β>X>Q>QY

)
. (4)

An alternative called partial compression (PC) (Becker et al., 2017; Pilanci and Wainwright,

2015) is the solution to

min
β

(
β>X>Q>QXβ − 2β>X>Y

)
, (5)

which removes the compression matrix from the “X>Y ” term. Depending on the form of

the compression matrix Q, there may not be unique solutions to Equations (4) or (5).
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2.2 Compressed ridge regression

A well used technique to stabilize the least-squares problem is ridge regression (Hoerl and

Kennard, 1970). The ridge regression problem can be written in the Lagrangian form as

β̂(λ) := argmin
β
||Xβ − Y ||22 + λ ||β||22 . (6)

While β̂(λ) has better numerical stability than β̂(0) ≡ β̂, it improves neither the computa-

tional complexity, which is still O(np2), nor the storage, which is O(np). Besides being more

numerically stable, there exists λ > 0 such that β̂(λ) has lower risk than β̂. These results beg

the question: if β̂(λ) is a better overall procedure, why not compress it instead? Leveraging

this insight, we define the fully compressed ridge estimator, in analogue to Equation (4), as

β̂FC(λ) = argmin
β
||Q(Xβ − Y )||22 + λ ||β||22 = (X>Q>QX + λI)−1X>Q>QY. (7)

Likewise, analogous to Equation (5), the partially compressed ridge estimator is

β̂PC(λ) = argmin
β

(
β>X>Q>QXβ − 2β>X>Y + λ ||β||22

)
= (X>Q>QX + λI)−1X>Y.

Ignoring numerical issues for very small λ, both of these estimators always have a unique

solution regardless of Q and X.

2.3 Linear combination compressed ridge regression

Standard linear model theory gives that Y = Xβ̂+ ê where P(ê ∈ col(X)) = 0, and E [ê] = 0.

Therefore,

β̂FC(0) = (X>Q>QX)†X>Q>QY = (X>Q>QX)†X>Q>Q(Xβ̂ + ê)

= β̂ + (X>Q>QX)†X>Q>Qê,

and hence E
[
β̂FC(0)

]
= E

[
β̂
]

= β∗. This indicates that, like β̂, β̂FC(0) is unbiased and

hence must have larger variance than β̂. On the other hand,

β̂PC(0) = (X>Q>QX)†X>Y = (X>Q>QX)†X>(Xβ̂ + ê) = (X>Q>QX)†X>Xβ̂.
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Hence, β̂PC(0) is a biased estimator. In an effort to reduce out-of-sample MSE by balancing

bias and variance, it is reasonable to combine β̂FC(λ) and β̂PC(λ) instead of choosing between

them. For this reason, we consider two estimators generated by a linear combination

β̂α(λ) = αFC β̂FC(λ) + αPC β̂PC(λ),

where α := [αFC , αPC ]. A data-driven value α̂ can be computed by forming the matrix

B(λ) =
[
β̂FC(λ), β̂PC(λ)

]
∈ Rp×2, a column-wise concatenation of β̂FC(λ) and β̂PC(λ), and

then solving

α̂(λ) = argmin
α∈R2

∣∣∣∣∣∣
∣∣∣∣∣∣XB(λ)

αFC
αPC

− Y
∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

.

We refer to this estimator as linear combination compression. We also consider the convex

combination: α̂(λ) = argminα∈C ||XB(λ)α− Y ||22 where C =
{
α ∈ [0, 1]2 : 1>α = 1

}
. We

emphasize with the notation α̂(λ) that α̂ is a deterministic function of λ (as well as B,

X, Y ) and not a separate tuning parameter. We will suppress its dependence on λ and

simply use α̂ in what follows. We discuss how to select λ in Section 3. For either combined

estimator, an estimator of β, or a prediction Ŷ , can be produced with β̂α̂(λ) := B(λ)α̂ and

Ŷα̂(λ) := Xβ̂α̂(λ), respectively.

2.4 Compression matrices

The effectiveness of compression depends on q, the nature of Q, and the structure of X and

β∗. For arbitrary Q, the multiplication QX would take O(qnp) operations and, hence, could

be as expensive as solving the original least squares problem. However, this multiplication is

“embarrassingly parallel” (say, by the map-reduce framework) rendering the multiplication

cost somewhat meaningless in contrast to the least squares solution, which is not embar-

rassingly parallel. Specifically, by generating one row Qi in a sparse manner, performing

the multiplication QiX, and then throwing away the row, we avoid ever creating or storing

the q × n matrix Q and can perform each row multiplication on a different processor before

recombining. Therefore, the limiting computation for solving (7) is only O(qp2).1

1Throughout this paper, our timing measurements exclude the time required to perform the compression.

As discussed here, the compression operation itself is easily parallelized, but also highly system dependent.
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The structure of Q is chosen, typically, either for its theoretical or computational proper-

ties. Examples are standard Gaussian entries, producing dense but theoretically convenient

Q, fast Johnson-Lindenstrauss methods, or the counting sketch. A thorough discussion of

these methods is outside the scope of this paper. Instead, we use a “sparse Bernoulli” ma-

trix (Achlioptas, 2003; Dasgupta et al., 2010; Kane and Nelson, 2014; Woodruff, 2014).

Here, the entries of Q are generated independently where P(Qij = 0) = 1 − 1/s and

P(Qij = −1) = P(Qij = 1) = 1/(2s) for some s ≥ 1. Then, Q has approximately qn/s

non-zero entries and can be multiplied quickly with high probability, while Equation (4) can

be solved without parallelization in O(qnp/s+qp2) time on average. Throughout this paper,

we assume Q is renormalized so that E[Q>Q] = In.2

There is an important tradeoff between q and s. Larger s means that the matrix mul-

tiplication can be performed more quickly at the expense of increasing the variance of the

resulting estimator (see the theoretical results in Section 6.1). Essentially, computations

increase linearly in q/s while the variance decreases linearly in q/s. Thus, the tradeoff

between computational burden and statistical efficiency can be made explicit for sparse

Bernoulli Q. For the Johnson-Lindenstrauss transform, the matrix multiplication will be

essentially computed via the Fast Fourier Transform and requires O(np log(q)) operations.

Counting sketches sample q rows from X according to some distribution. For more details

on computational costs of these techniques, see for example Ailon and Chazelle (2006); Ma

et al. (2015); Wang et al. (2017).

3 Tuning Parameter Selection

Employing a ridge penalty or other form of regularization requires appropriate selection of

λ to achieve good statistical performance. Presumably, if computations or storage are at a

premium, computer-intensive resampling methods such as cross-validation are unavailable.

For instance, one could take advantage of multithreading (on a quad-core CPU) or use the GPU if it is

available. Many R packages exist that automatically take advantage of these possibilities easily. Therefore,

the best implementation varies widely across operating systems and even across, say, Apple MacBook Pros

built in the same year running the same OS. For this reason, rather than report timings for code specific to

the system we used, we report timings achievable for most people using a single processor.
2We use a subscript on the identity matrix to denote its dimension when not immediately clear.
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Therefore, we develop methods that rely on a corrected training-error estimate of the risk.

These corrections depend crucially on the degrees of freedom. Specifically, the degrees of

freedom (Efron, 1986) of a procedure g : Rn → Rn that produces predictions g(Y ) = Ŷ is

df(g) :=
1

σ2

n∑
i=1

Cov(gi(Y ), Yi),

where σ2 = V(Yi).

If the response vector is distributed according to the homoskedastic model Y ∼ (µ, σ2I),

then we can decompose the prediction risk of the procedure g as

Risk(g) = E ||g(Y )− µ||22 = E ||g(Y )− Y ||22 − nσ
2 + 2σ2df(g). (8)

A plug-in estimate of Risk(g) (analogous to Cp, Mallows, 1973) is then

R̂isk(g) = ||g(Y )− Y ||22 − nσ̂
2 + 2σ̂2d̂f(g),

where d̂f(g) and σ̂2 are estimates of df(g) and σ2, respectively.3 We discuss strategies for

forming d̂f(g) in Section 3.1. As for the variance, ordinarily one would use the unbiased

estimator σ̂2 = (n − df(g))−1 ||(In − ΠX)Y ||22, where ΠX = X(X>X)†X> = UU> is the

orthogonal projection onto the column space of X. However, computing In − ΠX is just as

expensive as computing the least squares solution ΠXY itself. Therefore, to avoid estimating

σ2, we use generalized cross validation (Golub et al., 1979)

GCV(g) =
1
n
||g(Y )− Y ||22

(1− df(g)/n)2
.

3.1 Estimating the degrees of freedom

For any procedure g which is linear in Y (that is, there exists some matrix Φ which does not

depend on Y such that g(Y ) = ΦY ), df(g) = tr(Φ), the trace of Φ. Therefore, computing

the exact degrees of freedom for β̂α(λ) (that is, the linear or convex combination estimator

with a fixed α) is straightforward. In this case,

Xβ̂α(λ) = XB(λ)α = αFCXβ̂FC(λ) + αPCXβ̂PC(λ) =: αFCHFCY + αPCHPCY = ΦY

3See the Supplementary Material for a short derivation of Equation (8).
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where HFC = X(X>Q>QX + λI)−1X>Q>Q and HPC = X(X>Q>QX + λI)−1X>. So the

degrees of freedom of β̂α(λ) is df = αPC tr (HPC) + αFC tr (HFC) . In particular, both the

fully and partially compressed estimators have simple forms for the degrees of freedom which

do not need to be estimated.

For the linear combination estimator when α is estimated, computing the degrees of

freedom is more complicated. This estimator is nonlinear because both the matrix B(λ) and

the weight vector α̂ are functions of Y . A straighforward estimator of the degrees of freedom

for β̂α̂(λ) is created by replacing α with α̂:

d̂f = α̂FC tr
(
X(X>Q>QX + λI)−1X>Q>Q

)
+ α̂PC tr

(
X(X>Q>QX + λI)−1X>

)
.

This approximation has been proposed for other nonlinear estimators such as neural networks

(Ingrassia and Morlini, 2007). However, this estimator should intuitively underestimate the

degrees of freedom, because it does not account for the extra flexibility introduced by allowing

α̂ to depend on Y .

Alternatively, the degrees of freedom can be computed via Stein’s lemma (Stein, 1981)

if we are willing to assume that the response vector is multivariate normal: Y ∼ N(µ,Σ).

Then, if g(Y ) is continuous and almost differentiable in Y , df(g) = E[(∇ · g)(Y )], where

(∇ · g)(Y ) =
∑n

i=1 ∂gi/∂Yi is the divergence of g. It immediately follows that d̂f(g) =

(∇ · g)(Y ) is an unbiased estimator of df(g). Though the calculus is tedious, the divergence

of the linear combination estimator can be calculated by repeated applications of the chain

rule. It turns out that the divergence is a perturbation of the approximate estimator d̂f

above. The explicit formula and its derivation are given in the Supplementary Material. We

use the divergence for all of our empirical examples.

A major advantage of the divergence calculation is that it measures how hard the method

fits the data through both β̂ and α̂ for each value of λ. It thus allows the combination estima-

tors to avoid overfitting through the choice of λ alone. As such, α is not a tuning parameter

but rather a component of the estimator, and the only tuning parameter is λ. It is, however,

not possible to jointly solve for the vector (β, α), because only their product is identified.

Both combination estimators are essentially model-averaged estimators, and as such, their

improved predictive performance in simulations is not surprising (see Section 4.5).4 Their

4They are also better estimators of the true parameters (Section 4.2), which is not always the case for
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benefit is that we can average in a data driven fashion without overfitting because of the

ability to correctly incorporate its effect into the risk estimator.

3.2 Computing the path

In order to select tuning parameters, we need to compute the estimators quickly for a range

of possible λ. Luckily, this can be implemented in the same way as with ridge regression.

One can write (X>Q>QX + λI)−1 = R(L2 + λI)−1R>, where the singular value decompo-

sition is written QX = SLR> with S>S = Iq, R
>R = Ip, and L is a diagonal matrix of

singular values. Therefore, we can take the SVD of QX once and then compute the entire

path of solutions for a sequence of λ while only increasing the computational complexity

multiplicatively in the number of λ values considered.

4 Simulations

We construct simulations under a variety of data generating scenarios to explore when β̂α̂(λ)

performs well. For the sake of space, we have only included a representative subset of the

results. The remainder are available in the Supplementary Material. All simulations and

empirical calculations were performed with R (R Core Team, 2019). Figures and tables

are generated using the tidyverse family of packages (Wickham, 2017). The Supplemen-

tal Materials were created with knitr and rmarkdown (Xie, 2015, 2019; Xie et al., 2018).

Most computations were implemented in parallel on the Carbonate5 large memory computer

cluster via the batchtools package (Lang et al., 2017).

4.1 Setup

To create data, we generate the design matrix X ∈ Rn×p by independently sampling the

rows from a multivariate normal distribution with mean zero and covariance matrix Σ which

has unit variance on the diagonal and correlation ρ ∈ {0.1, 0.5, 0.9} off the diagonal. We

model averaging.
5This research was supported in part by Lilly Endowment, Inc., through its support for the Indiana

University Pervasive Technology Institute.
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Figure 2: Average relative estimation risk compared to ridge regression (the Bayes-optimal

estimator). Here β∗ is Gaussian and q = 1000.

then form Y = Xβ∗ + ε, where εi are i.i.d. Gaussian with mean zero and variance σ2. In all

cases, we take n = 10,000 training samples and let p = 50, 100, 250, or 500.

We use two different structures for β∗, though we have only included results for the first

here. In the first case, we take β∗ ∼ N(0, τ 2I). Under this model, ridge regression is Bayes-

optimal for λ∗ = n−1σ2/τ 2, so it represents a true basis for comparing the loss in prediction

accuracy due to compression. We set τ 2 = π/2 so that p−1E[||β∗||1] = 1. Finally, to ensure

that λ∗ is not too small, we take σ = 50 implying λ∗ ≈ 0.16. The second structure for β∗ is

created to make ridge regression perform poorly: we simply set (β∗)j ≡ 1 for all 1 ≤ j ≤ p.

We examine four different compressed estimators with penalization: (1) full compres-

sion, (2) partial compression, (3) a linear combination of the first two, and (4) a convex

combination of the first two. We also use the OLS estimator and the ridge regression es-

timator. For ridge regression, we use λ∗ in the first scenario and choose λ by minimizing

GCV in the other case. For the compressed estimators, we examine three possible values of

q ∈ {500, 1000, 2000}. In each case, we generate Q ∈ {−1, 0, 1}q×n as a “sparse Bernoulli”

matrix with s = 3.
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4.2 Estimation error simulations

For all four compressed methods, there exist λ values which allow the compressed method

to beat ordinary least squares (not shown). This is to be expected given the simulation

conditions. Analogously, as expected, regularized compression always outperforms unregu-

larized compression for some values of λ. While we have simulated all combinations of q, p,

and ρ, we only display results for q = 1000 which are similar to those from other parameter

configurations. Figure 2 shows the estimation risk for the compressed methods relative to

the estimation risk for ridge regression when β∗ is drawn from a Gaussian distribution.

Combining partial and full compression strictly dominates the other compressed methods

in terms of estimation risk at all values of λ. When p is small relative to n and the design

has high correlation, tuning parameter selection is less important for accurate estimation.

We note also that regardless of the choice of design, the linear combination is generally less

sensitive to the choice of λ.

4.3 Selecting tuning parameters

The previous simulation shows that regularized compression can compare favorably with the

performance of the Bayes estimator as long as we can choose λ well. In this section, we

investigate our proposed tuning parameter selection strategy.

We again generate a training set with n = 10,000, but we also generate an independent

test set with 5000 samples. Then we use the training set to choose λGCV by generalized cross

validation as described in Section 3.1. We also define an optimal (though unavailable) λtest

by minimizing the test set prediction error,

λtest = argmin
λ

1

n

∣∣∣∣∣∣Ytest −Xtestβ̂(λ)
∣∣∣∣∣∣2
2
.

Figure 3 shows the prediction risk of the GCV-selected estimates relative to the oracle

for q = 1000 and ρ = 0.5, but results for other choices of q and ρ are similar. That is, we

plot the ratio

testGCV

testmin

=

∣∣∣∣∣∣Ytest −Xtestβ̂(λGCV)
∣∣∣∣∣∣2
2∣∣∣∣∣∣Ytest −Xtestβ̂(λtest)

∣∣∣∣∣∣2
2

≥ 1.
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Figure 3: Percentage increase in test error between the tuning parameter chosen by GCV and

the best tuning parameter we would have chosen with access to a large test set (necessarily

greater than 0).

All methods are within 1% of the best test error the majority of the time, but the full

compression tends to be the worst. Note that the minimum test error is for the particular

method rather than relative to the best possible test error across all methods. Thus, while

GCV selects the optimal tuning parameter for partial compression more accurately than

for the linear combination, the linear combination has lower estimation error at its own

GCV-selected tuning parameter. While Section 3 presented two methods for estimating the

degrees of freedom—a simple plug-in approximation and the divergence—we only present

the results for the divergence.

4.4 Overall performance assessments

Using the tuning parameter selected by GCV with the divergence, different compression

methods perform better in different situations. Figure 4 examines the performance across

all simulations when β∗ is Gaussian. Specifically, for each of the 50 training data sets, we

estimate the linear model with each method, choosing λ by GCV if appropriate. We select

the method with the lowest estimation error. We plot the proportion of times each method

“wins” across all simulation conditions. Overall, the convex combination estimator works

well in most cases and has smaller variance than the linear combination estimator. In the

cases in which partial compression is better, the convex combination is close behind. The

performance of the linear combination estimator is somewhat odd. Because the relative

weights on full compression and partial compression are data dependent and unconstrained,
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Figure 4: Proportion of simulations a method has the best estimation error for each simula-

tion condition.

these weights can explode despite the regularization imposed by λ. Thus, it may be that

β̂FC ≈ 0 and β̂PC ≈ 0, but by multiplying them by large magnitude α̂FC and α̂PC of

opposite signs, the result is a large unpenalized estimate. In cases where the true coefficients

are similar to each other but non-zero, the effect is to shrink toward that non-zero value. In

these situations, the linear combination estimator works well, while in others, it’s behavior

becomes increasingly erratic as λ → ∞. Based on the simulations, we feel that the convex

combination estimator is the best choice in most situations.

4.5 Recommendations

Even though ridge regression is optimal when β∗ has a Gaussian distribution, regularized

compression can achieve nearly the same prediction error while using fewer computations

and less storage space. Figure 5 displays the prediction risk for each method when the tuning

parameter is chosen by GCV. The difference between the optimal model and the compressed

approximations is often less than 5%. Compressed methods work well when the correlation

in the design is high, which is rather unexpected, or when either p/n is small or q/n→ 1.

Under the setting β∗ ≡ 1, partial compression works relatively poorly, and therefore,
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Figure 5: Prediction error on the test set for all methods.

α̂ tends to emphasize full compression. As discussed above, partial compression is biased

toward 0 even when λ = 0, and larger λ will exacerbate this property. In this case, both

convex combination and linear combination work significantly better. The complete set of

simulation results are available in the Supplementary Material.

5 Real data examples

We present results for two different types of real data: a collection of genetics data and an

exercise in denoising a magnetic resonance image (MRI) of the brain. While our simulations

used perhaps idealized conditions (true linear model, homoskedastic noise), our data exam-
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ples are chosen to illustrate performance under more varied conditions. The first maintains

independence across observations and homoskedasticity but uses entirely categorical predic-

tors. The second uses continuous predictors but with heteroskedastic, spatially dependent

noise.

5.1 Genetics

The first data we examine are a collection of short-read RNA sequences. The data are

publicly available6 and were first examined by Li et al. (2010), who suggest a Poisson linear

model to predict read counts based on the surrounding nucleotides. An implementation of

this method is provided in the R package mseq, described by Li et al. (2010) and available

from the CRAN archive.

In all, there are eight data files from three research groups. Three datasets are due to

Mortazavi et al. (2008) which mapped mouse transcriptomes from brain, liver, and skeletal

muscle tissues. Wang et al. (2008) collected data from 15 different human tissues which have

been merged into three groups based on tissue similarities. Finally, Cloonan et al. (2008)

examined RNA sequences from mouse embryonic stem cells and embryoid bodies. In all

cases, we use the top 100 highly-expressed genes as well as the surrounding sequences to

predict expression counts as in Li et al. (2010). Table 1 shows the sample size n for each of

the eight data sets.

Following Li et al. (2010) and Dalpiaz et al. (2013), we examine each of these datasets

separately. In order to build the model, we must select how many surrounding nucleotides

to use for prediction. As nucleotides are factors (taking levels C,T,A,G), a window of k

surrounding nucleotides will give p = 3(k + 1) binary predictors plus an intercept. We

could also use dinucleotide pairs (or higher interactions), as in Li et al. (2010), resulting in

p = 15(k + 1) predictors. For our illustration, we follow Ma et al. (2015), who also apply

different compressed linear regression methods to these data, and use k = 39.

The results of our analysis are shown in Figure 6. For each dataset, which we denote

by the first letter of the senior author’s last name (W, B, and G respectively) followed

by a number, we split the data randomly into 75% training data and 25% testing data.

6From Jun Li: http://www3.nd.edu/~jli9/mseq/data_top100.zip
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dataset B1 B2 B3 G1 G2 W1 W2 W3

n 157614 125056 103394 51751 64966 146828 171776 143570

Table 1: Number of observations for each of the 8 genetics data sets.
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Figure 6: Results of each method on 50 replications of training test splits on each of the

eight genetics data sets. The results are percentage increase in test error relative to ordinary

least squares.

We then compress the training set using q = 10,000 and q = 20,000. We apply each of the

regularized compressed methods, choosing λ by generalized cross validation and then evaluate

the estimators by making predictions on the test set. We repeat this procedure 50 times

and present the average of the log test error relative to ridge regression. Across data sets,

q = 10,000 results in data reductions between 74% and 93% (meaning 0.26 ≥ q/n ≥ 0.07)

while q = 20,000 gives reductions between 48% and 84%.

For these data, ridge and OLS give equivalent test set performance (differing by less

than .001%) across all data sets. We also tried LASSO, adaptive LASSO, and the elastic

net which are all nearly equivalent to ridge regression.7 Previous analyses have found that

7The full set of results are displayed in the Supplementary Material. Computations were performed with

the glmnet package (Friedman et al., 2010; Simon et al., 2011)
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the coefficients are roughly centered around zero with most quite small. Nonetheless, the

compressed methods are not much worse than ridge regression. The worst method is always

full compression. The linear combination and the convex combination are nearly equivalent,

while partial compression is just slightly worse. Even for full compression, its worst perfor-

mance across all data sets and over both values of q is less than 1.5% worse than OLS. So

even for the worst performing method, large amounts of compression result in a negligible

increase in test set error.

5.2 MRI denoising

A crucial preprocessing step for medical image analysis is the removal of spurious noise. Pre-

analysis denoising is especially crucial for the study of Magnetic Resonance Images (MRIs)

because the aim is detection or visualization of local structures (brain lesions, tumors, white

matter fiber tracking) rather than voxel-level (the 3D image pixel) deviations. Standard

methods use variations of kernel smoothing (Saint-Marc et al., 1989) or total variation de-

noising (Sapiro, 1996), but more recent methods attempt to adapt to edge or other structures

automatically to avoid smoothing neighboring regions together (Coupe et al., 2008). These

current methods, called nonlocal means denoising filters, come at a computational cost: a

typical 3D T1-weighted MRI has around 7 million voxels and these may be scanned repeat-

edly over time.

In this section, we follow the analysis of Coupe et al. (2008) for denoising a single

181 × 217 × 181 3D MRI. Our goal is not to improve upon state-of-the-art MR denoising

methods, but simply to illustrate that reasonable compressed approximations can perform

adequately in a small fraction of the time. In particular, we will simply use convex combi-

nation compression to regress individual voxels on a 3D neighborhood. As such, our linear

model will have a strongly correlated design matrix X as well as correlated, heteroskedastic

noise. Coupe et al. (2008) find that standard nonlinear means desnoising requires around 6

hours of processing time on a single 3 GHz CPU while their optimized approximation takes

about 5 minutes with negligible loss of performance. Performing (admittedly non-optimized)

convex combination regularized regression requires between 30 seconds and 3 minutes de-

pending on the size of the local neighborhood and the amount of compression used.

As in Coupe et al. (2008), we use a simulated, noise-free, T1-weighted MRI from the
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Figure 7: Prediction accuracy of convex compression for a variety of noise levels and com-

pression sizes. Larger values of the PSNR statistic are better.

BrainWeb database (Collins et al., 1998). We follow their analysis and simulate noisy images

by adding independent Gaussian noise to each voxel. We create a mask of voxels to use by

keeping only those voxels whose true brightness exceeds 50, treating others as non-brain.

We use the bottom 130 slices of the noisy data as our training set and the top 40 slices as a

validation set for choosing the amount of regularization. Finally, we evaluate our predictions

on the original, noise-free brain.

Figure 7 displays our results for six different compression levels—q ∈ {500, 1000, 2000,

5000, 10000, 20000}—4 different noise levels—3%, 9%, 15%, and 21%— and 4 different radii

for the local neighborhood (meaning that the predictors are the noisy values in a 3D cube

of radius r around the target voxel). The noise standard deviation is taken to be 150 times

the noise percent. In each case, the training data has n = 2,651,260, the validation set

has n = 231,340 and the test set has just over 3 million voxels. The number of predictors

p = {26, 124, 342, 728} respectively. The measure of accuracy we use is the peak signal-to-

noise ratio, defined for 8-bit encoded images as PSNR = 20 log10

(
255/

√
1
n

∑
i(Yi − Ŷi)2

)
.

The PSNR (measured in dB) is decreasing in the mean-squared error, so larger values are

better. As shown in the figure, at the 3% noise level, this simple regression technique is
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noiseless noise = 9% q = 2000 q = 20000

Figure 8: This image shows the performance of our methods on one slice. Our best result at

this noise level used q = 20000 and radius 2 and achieved a PSNR of 31.8dB. For comparison,

state-of-the-art approximations have PSNR between 33.7dB and 34.4dB. The q = 2000 image

has a PSNR of 31.4dB while the noisy image has PSNR of 25.5dB.

unable to improve on simply using the noisy image no matter the size of the local radius or

the amount of compression. However, at larger noise levels, this method performs reasonably.

For comparison to the state-of-the-art technique, at the 9% noise level, Coupe et al. (2008,

see Table II) get PSNR = 34.44dB using their best method which requires 50 minutes to

compute and PSNR = 33.75dB using their fastest method (requiring 5.5 minutes). Our best

result at this noise level was PSNR = 31.8dB, used a radius of 2, q = 20,000, and required

27 seconds to compute. Figure 8 gives a visual comparison of these results for the middle

horizontal slice. The noisy image had PSNR = 25.5dB.

6 Theoretical analysis

To develop a better understanding of the relationship between the compressed regression

methods proposed here and standard full-data techniques, we derive expressions for the

expectation and variance of full and partial compression estimators as well as their bias and

variance. For comparison, we first present the standard analogues for ridge regression.
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6.1 Mean squared error performance

Write the singular value decomposition of X = UDV > where U>U = In, V >V = Ip, and D

is a diagonal matrix of singular values. Then define the ridge regression estimator of β∗ as

in Equation (6).

Standard analysis gives the squared bias and trace of the variance of the ridge regression

estimator conditional on the design.

Lemma 1.

bias2
(
β̂ridge(λ) | X

)
= λ2β>∗ V (D2 + λIp)

−2V >β∗.

tr
(
V[β̂ridge(λ) | X]

)
= σ2

p∑
j=1

d2j
(d2j + λ)2

.

In what follows, we will derive approximations to these quantities for the fully and par-

tially compressed ridge regression estimators of β∗. Because all of our estimators depend on

(X>Q>QX + λIp)
−1, a generally intractable quantity, we derive approximate results via a

first order Taylor expansion of the estimator with respect to the matrix Q>Q. The proofs

as well as intermediary results are included in the Supplementary Material.

Following Ma et al. (2015), we use the Taylor expansion of β̂ as a function of A := s
q
Q>Q

around In to derive results conditional on Y and X (taking expectations over Q) as well

as results unconditional on Y . The first case reflects the randomness in the compression

algorithm relative to the more computationally demanding ridge regression. The second is

useful for comparing the compressed procedures with ridge regression by including random-

ness introduced through the data generating process and through the compression algorithm.

In all cases, these results are conditional on the design matrix as was the case above. For

convenience of expression, define

M := (X>X + λIp)
−1X> = V (D2 + λIp)

−1DU>, and

H := X(X>X + λIp)
−1X> = UD(D2 + λIp)

−1DU> = XM.

Finally, for these results we will assume the linear model with homoskedastic noise and that

q = cn for some 0 < c ≤ 1 which is fixed. We discuss this last assumption further in the

remark below.
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Theorem 2. The squared-bias of the fully compressed estimator is:

bias2
(
β̂FC | X,Q

)
= λ2β>∗ V (D2 + λI)−2V >β∗ + oP (1)+

2β>∗ (MX − I)>M(A− I)(I −H)Xβ∗

bias2
(
β̂FC | X

)
= λ2β>∗ V (D2 + λI)−2V >β∗ + oP (1).

The squared-bias of the partially compressed estimator is:

bias2
(
β̂PC | X,Q

)
= λ2β>∗ V (D2 + λI)−2V >β∗ − 2β>∗ (MX − I)>M(A− I)HXβ∗ + oP (1)

bias2
(
β̂PC | X

)
= λ2β>∗ V (D2 + λI)−2V >β∗ + oP (1).

Note that, ignoring the remainder, the squared bias of both fully compressed and partially

compressed estimators when averaged over the compression is the same as that of ridge

regression.

Theorem 3. The variance of the fully compressed estimator is:

tr
(
V
[
β̂FC | X,Q

])
= σ2

p∑
j=1

d2j
(d2j + λ)2

+ 2 tr
(
M(I −H)(A− I)M>)+ oP (1)

tr
(
V
[
β̂FC | X

])
= σ2

p∑
j=1

d2j
(d2j + λ)2

+ oP (1)

+
λ2(s− 2)+

q
β>∗ V D

2(D2 + λI)−4D2V >β∗

+
λ2

q
β>∗ V D(D2 + λI)−2DV >β∗

p∑
j=1

d2j
(d2j + λ)2

.

The variance of the partially compressed estimator is:

tr
(
V
[
β̂PC | X,Q

])
= σ2

p∑
j=1

d2j
(d2j + λ)2

+ 2 tr
(
MH(A− I)M>)+ oP (1)

tr
(
V
[
β̂PC | X

])
= σ2

p∑
j=1

d2j
(d2j + λ)2

+ oP (1)

+
(s− 2)+

q
β>∗ V D

2(D2 + λI)−2D2V >β∗

+
1

q
β>∗ V D

3(D2 + λI)−2D3V >β∗

p∑
j=1

d2j
(d2j + λ)2

.
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Remark 1. In each expression above, the Taylor series is valid whenever higher-order terms

are small. In our case, the higher-order terms are oP (||A− I||2) under the expansion, for

some matrix norm ||·||. Here oP (·) is with respect to the randomness in A through Q. As

Q is independent of the data, one can examine how large these deviations are likely to be.

In particular, using results similar to the Tracy-Widom law (Rudelson and Vershynin, 2010,

Proposition 2.4), one can show that ||A− I|| = OP (
√
n/q). Therefore, taking q = cn for

some 0 < c ≤ 1 means that the remainder is oP (1). This is in contrast with results of

Ma et al. (2015) for two reasons: (1) their sampling mechanism is allowed to depend on

the data where ours is not, and (2) they can lose rank from the compression. In our case,

(X>Q>QX+λI) is full rank for all λ > 0 regardless of the rank of X>Q>QX, so the Taylor

series is always valid.

Corollary 4. Suppose X is such that 1
n
X>X = Ip, b

2 := ||β∗||22, and θ := λ/n. Then

MSE(β̂ridge) = b2
(

θ

1 + θ

)2

+
pσ2

n(1 + θ)2

MSE(β̂FC) = b2
(

θ

1 + θ

)2

+
pσ2

n(1 + θ)2
+
b2pθ2(s− 2)+
q(1 + θ)4

+
p2θ2b2

q(1 + θ)4

MSE(β̂PC) = b2
(

θ

1 + θ

)2

+
pσ2

n(1 + θ)2
+
p(s− 2)+b

2

q(1 + θ)2
+

pb2

q(1 + θ)4
.

Hence, for ridge, the optimal θ∗ = σ2p/(nb2) and λ∗ = σ2p/b2. For the other methods,

the MSE can be minimized numerically, but we have, so far, been unable to find an analytic

expression.

7 Conclusion

In this paper, we propose and explore a broad family of compressed, regularized linear model

estimators created by generalizing two commonly used approximation procedures which we

notated β̂FC and β̂PC . We show that β̂FC must indeed perform worse than the least squares

solution. We suggest combining full and partial compression estimators instead with an `2

penalty. As this additional regularization introduces a tuning parameter, we give justifiable

methods for choosing it in a computationally feasible way. We find that our new estimators

can perform nearly as well as their full-data analogues, and that our tuning parameter

selection methods are quite accurate.
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Interesting future work would examine other forms for the compression matrix Q to

examine their statistical impact. Finally, while ridge penalties are amenable to theoretical

analysis because of their closed form solution, it is worthwhile to examine other penalty

functions and other losses, such as generalized linear models.

SUPPLEMENTARY MATERIAL

Complete simulation results, divergence formula, proofs: Figures for additional sim-

ulation conditions not included above, the explicit formula for the divergence used in

tuning parameter selection and proofs of all the results contained in Section 6. (PDF

document)

R-package “cplr”: R-package containing code to perform the methods described in the

article. The package also contains all data sets used as examples in the article. (GNU

zipped tar) The package is also easily installable by calling

devtools::install_github(’dajmcdon/cplr’) from R.
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